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1. Introduction

Understanding in detail the mobility patterns in the landscape is a challenging problem.

In fact rather little is known about it and thus even a study of what may seem non generic

paths is of interest. For example Tye [1, 2] has suggested to apply the phenomena of

rapid tunneling [4 – 8] to shed a different light on the issue of the cosmological constant.

Tunneling is generically heavily suppressed. In quantum mechanics it is known that there

are special barrier configurations for which the suppression factor is removed and tunneling

proceeds as if the barrier were transparent, this phenomenon is called resonant tunneling.

Although resonant tunneling is a well understood and observed phenomenon in quan-

tum mechanics [9, 10], it does not easily extend to systems with an infinite number of

degrees of freedom. Indeed a no-go theorem for resonant tunneling from a metastable

vacuum in a scalar quantum field theory (SQFT) has been recently proved [4]. The aim

of the present paper is to study whether theories with more structure then SQFT give a

different outcome. Gauge theories had provided exits out of no-go theorems for pure scalar

field theories. One example is the existence of solitons in D > 2 in theories of a scalar

field coupled to a gauge field, which are forbidden for a pure scalar field theory in D > 2

by Derrick theorem [11]. Motivated by that, we will analyze the possibility of resonant

tunneling in theories of scalar fields coupled to gauge fields with several metastable vacua.
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Figure 1: Double barrier particle decay: In the semiclassical regime a metastable state with wave

function localized around x = x+ decays to the true vacuum localized around x = x
−

. If the length

of the classically allowed region x1 < x < x2 contains a half-integer number of de Broglie particle

wave-length then quantum interference leads to resonant tunneling.

We will follow the ideas of the proof of the no-go theorem for SQFT [4], generalizing it to

a gauge theory in any space-time dimension. The result is that in a theory of a scalar field

coupled to a gauge field a homogenous metastable vacuum does not decay in a resonant

fashion. This provides a no go theorem for resonant vacuum decay which generalizes [4] in

allowing the presence of gauge field with generic coupling to the scalar field.

The organization of the paper is the following: In the next section we review resonant

tunneling in quantum mechanics, leaving for the appendix the details of the derivations

of the tunneling amplitudes. We then discuss what it would be required in order to have

a similar phenomenon in quantum field theory, such as the constraints imposed by time-

analytic continuation. In section III we generalize to a generic number of space-time

dimensions D the proof of the no go theorem of [4] for resonant tunneling in SQFT, in order

to be able to discuss resonant tunneling in gauge theories of scalar fields. In the appendix

a derivation of quantum mechanical tunneling amplitudes and resonance conditions for

multi-barrier potentials is reviewed.

2. Resonant tunneling: From QM to QFT

Quantum interference is typical in systems with a degenerate set of classical trajectories.

In the double barrier potential V (x) in figure 1, in the semiclassical regime a point particle

with wave function localized around the false vacuum x = x+ will decay to the true vacuum

localized around x = x−. The tunneling process involves an infinite number of decay

paths, labeled by the number of oscillations in the classical allowed region x1 < x < x2.
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Figure 2: In the semiclassical regime, a particle with wave function localized around a false vacuum

x = x+ can decay to the true vacuum localized around x = x
−

by quantum tunneling the barrier

x+ < x < x1.

Different oscillating paths can constructively interfere and, for specific particle wave lengths

the double potential barrier becomes completely transparent. This phenomenon is called

resonant tunneling, and it has been observed in various experiments [9, 10].

While the amplitude to decay by tunneling through the single barrier in figure 2 is at

leading order in ~ exponentially suppressed by a instanton action

T =
1

cosh(SI)
∼ exp

(

−
1

~

∫ x1

x+

dx
√

2V (x)

)

, (2.1)

in the double barrier case, if all the oscillating paths in region x1 < x < x2 have the same

phase at x = x2, they create a constructive interference for the wave function entering the

second forbidden region x2 < x < x3. Constructive interference happens when the distance

between the two inversion points x = x1 and x = x2 contains an half-integral number of

de Broglie wave lengths

SII =
1

~

∫ x2

x1

dx
√

−2V (x) =

(

N +
1

2

)

π, (2.2)

for integers N . Equation (2.2) denotes a resonance condition, since in this case the ampli-

tude to decay to x = x− reaches its maximum modulus

|T+−| =
1

cosh(SI − SIII)
. (2.3)

SI and SIII are the instanton actions that dominate the amplitude in the two forbidden

regions x+ < x < x1, and x2 < x < x3,

SI =
1

~

∫ x1

x+

dx
√

2V (x),

SIII =
1

~

∫ x3

x2

dx
√

2V (x). (2.4)
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Figure 3: Double barrier decay in QFT. The field in a false vacuum ϕ = ϕ+ can decay trough

quantum tunneling toward lower energy density local minima of the effective potential.

If SI ∼ SIII the decay amplitude (2.3) gets close to one |T+−| . 1, and thus the

metastable state x = x+ becomes very short living. For this to happen it is required that

SI − SIII ∼ 0, and that SII satisfies eq. (2.2). In the semiclassical regime both SI and SIII

are large numbers in ~ units, thus the condition SI − SIII ∼ 0 requires a large amount of

fine tuning for the shape of the potential V (x).

In quantum field theory the post-tunneling dynamics would begin in a localized space-

time region, in a way similar to the one-barrier tunneling field decay discussed in [12,

13]. The field tunnels in a finite space-time region by making a quantum jump from its

original value ϕ = ϕ+ to the final vacuum value ϕ = ϕ−, ( see figure 3). In the thin wall

approximation, new and old vacua are separated by a domain wall, whose positive energy

balances exactly the decrease in energy in the limited new vacuum region. The domain

wall will finally expand by converting potential energy into wall kinetics energy.

The object that computes the amplitude per unit of space-time volume for the field to

tunnel through a classically forbidden region is the Euclidean path integral

I =

∫

Dϕe−SE [ϕ]. (2.5)

In the semiclassical approximation the dominant contributions to I are Euclidean

classical fields (instantons). These Euclidean fields satisfy a global constraint which is

– 4 –
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the Euclidean version of energy conservation

∂

∂tE

∫

d~x

[

1

2

(

∂ϕ

∂tE

)2

−
d
∑

i=1

1

2

(

∂ϕ

∂xi

)2

− V (ϕ)

]

=
∂

∂tE

∫

d~x

[

1

2

(

∂ϕ

∂tE

)2

− U [ϕ]

]

= 0. (2.6)

In quantum field theory (QFT) in order to have quantum interference a periodic field

path ϕ, solution of the equations of motion with Lorentzian signature, would be required.

Resonant tunneling would then follow if its action S[ϕ] satisfied

S[ϕ] =

(

N +
1

2

)

π, (2.7)

for integer N .

This periodic path should be connected via time analytic continuation to Euclidean

paths, the latter describing tunneling in classically forbidden regions of the potential. The

question is whether in quantum field theory there are oscillating phenomena that parallel

the oscillating particle paths in the region x1 < x < x2 of figure 1.

In the classically allowed regions, where the potential for constant field configuration

is less then the metastable vacuum energy density, the generalized potential U [ϕ] of some

classical field solution could become negative, (for example this could happen for the po-

tential in figure 3 if on a sufficiently large space region ϕ assumes a value in the interval

ϕ1 < ϕ < ϕ2). If this happens one is forced to analytic continue the solution to real time

tE → itE = t at the point t̃E where ∂tEϕ(t̃E , ~x) = 0. Analytic continuation in t̃E = t̃

requires ∂tE ϕ(t̃E , ~x) = 0 = ∂tϕ(t̃, ~x).

In the following we will assume analytic continuation of an instanton ϕ(tE , ~x) to

Lorentzian time and then back to Euclidean time

U [ϕ](t1E) = U [ϕ](t2E) = 0, U [ϕ](tE) < 0, t1E < tE < t2E.

The Lorentzian continuation ϕ(t, ~x) is defined on the interval [t1, t2], where t1 = t1E
and t2 = t2E.

Together with this solution there are equally dominant contributions from paths in

which the Euclidean instanton is continued to a Lorentzian classical field ϕn(t, ~x), which is

a periodic extension of ϕ for a time period (2n+1)(t2−t1), for integer n. ϕn(t, ~x) would con-

tribute to the path integral with action S[ϕn] = S[ϕ](2n+1)(t1 ,t2) = (2n+1)S[ϕ](t1 ,t2), where

S[ϕ](t1,t2) =

∫ t2

t1

dt

∫

d~x

[

1

2

(

∂ϕ

∂t

)2

−

d
∑

i=1

1

2

(

∂ϕ

∂xi

)2

− V (ϕ)

]

, (2.8)

thus creating quantum interference in the path-integral.

A necessary condition for quantum interference in a multi-vacua potential to affect field

decay is therefore the existence of a finite action classical Lorentzian solution ϕ defined on
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a time interval [t1, t2]. ϕ has vanishing time derivative ∂tϕ(t1, ~x) = ∂tϕ(t2, ~x) = 0 in order

to be analytically continued to instanton field solution. In the following, we will check

whether ϕ has non-vanishing action. We consider resonant decay in scalar fields theories,

already discussed in [4], and the same issue in gauge theories of scalar fields, which is the

focus of this paper.

3. Vacuum decay in a landscape potential and the question of quantum

interference

As discussed at the end of the previous section, in order to have quantum interference

in vacuum decay the existence of a Lorentzian solution ϕ(t, ~x) defined on a time interval

[t1, t2] with non-vanishing action satisfying eq. (2.7) is required. Analytic continuation of

ϕ to Euclidean signature in t = t1 = t2 requires ∂tϕ(t1, ~x) = ∂tϕ(t2, ~x) = 0. Moreover

ϕ must respect the total energy constraint. Since we are studying the decay of the false

vacuum, ϕ has to approach at spacial infinity the original metastable vacuum ϕ+

lim
|~x|→∞

ϕ(t, ~x) = ϕ+, (3.1)

and therefore

lim
|~x|→∞

∂µϕ(t, ~x) = 0. (3.2)

3.1 No resonant tunneling in a scalar field theory

Let us consider a scalar field theory in D = 1 + d space-time dimensions with Lagrangian

L =
1

2
∂µϕ∂µϕ − V (ϕ), (3.3)

where V (ϕ) is a generic potential with various metastable vacua.

A necessary condition for the field ϕ to have non-vanishing action in the interval [t1, t2]

is the strict positivity of the following functional

OL[ϕ] =

∫ t2

t1

dx0

∫

d~x

[

(∂0ϕ)2 +
1

d

d
∑

i=1

(∂iϕ)2

]

. (3.4)

In fact, if OL[ϕ] = 0 , being an integral of a sum of positive terms, the derivatives of the

field vanish identically and S[ϕ] = S[ϕ+] = 0.

By using

∂µϕ∂νϕ = Tµν + ηµνL (3.5)

OL[ϕ] can be written in terms of the following combinations of diagonal components of the

energy-momentum tensor Tµν

OL[ϕ] =

∫ t2

t1

dx0

∫

d~x

[

T00 +
1

d

d
∑

i=1

Tii

]

. (3.6)
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Energy-momentum conservation ∂µTµi = 0 for the i-spacial component gives

∂iTii =
∑

j 6=i

∂jTji − ∂0T0i

=
∑

j 6=i

∂j(∂jϕ∂iϕ) − ∂0(∂0ϕ∂iϕ).

(3.7)

This implies that

∂i

∫ t2

t1

dx0

∫

∏

j 6=i

dxjTii = ∂iIii = 0, (3.8)

the Tii density integrated over the space-time domain orthogonal to the xi-direction and

containing the time interval (t1, t2) is constant along xi. Therefore Iii can be computed at

xi = ∞, where it depends only on V (ϕ+), since all the field derivatives go to zero at infinity

Iii = lim
xi→∞

∫ t2

t1

dx0

∫

∏

j 6=i

dxj ·

(

1

2
(∂0ϕ)2 +

1

2
(∂iϕ)2 −

1

2

d
∑

i=1

(∂iϕ)2 − V (ϕ)

)

= −

∫ t2

t1

dx0

∫

∏

j 6=i

dxjV (ϕ+). (3.9)

On the other hand, ∂µTµ0 = 0 gives

∂0T00 =

d
∑

i=1

∂iTi0 =

d
∑

i=1

∂i(∂iϕ∂0ϕ), (3.10)

that integrated all over the space gives energy conservation

∂0I00 = ∂0

∫

d~x T00 = 0. (3.11)

The energy equals the energy of our initial state at t1. This being the final configuration

of the Euclidean tunneling, its Euclidean energy is the same as the Euclidean energy of the

original decaying state. Since both configurations have zero time derivatives, there is no

distinction between Euclidean and Lorentzian energy. Assuming a homogeneous original

false vacuum ϕ = ϕ+,

I00 =

∫

d~x V (ϕ+). (3.12)

By using eq. (3.9) and eq. (3.12) in the field functional OL[ϕ] (3.4) one obtains

OL[ϕ] =

∫ t2

t1

dx0 I00 +
1

d

d
∑

i=1

∫

dxi Iii

=

∫ t2

t1

dx0

∫

d~x

[

V (ϕ+) −
1

d

d
∑

i=1

V (ϕ+)

]

= 0. (3.13)
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which shows that ∂0ϕ = |~∇ϕ| = 0 in the time interval [t1, t2], thus implying that the

field ϕ has zero action in the time interval [t1, t2]. Moreover, since the field is constant

in [t1, t2] it must be equal to the false vacuum ϕ = ϕ+. This shows that an intermediate

analytic continuation to Lorentzian signature is impossible, and the full tunneling event

is described by instanton fields in Euclidean signature. Thus one concludes that for the

decaying of a metastable vacuum in a pure scalar field theory with a multi-vacua potential

there is no quantum interference in the semiclassical approximation. This proves the no go

theorem for resonant tunneling in a pure scalar field theory in a generic number of space-

time dimensions D. Generalization of this result to an arbitrary number of interacting

scalar fields is straightforward, since also in this case one can compute each of the terms in

the space-like diagonal components of the energy-momentum tensor appearing in (3.6) by

going at spacial infinity, where they all equals minus the energy of the metastable vacuum.

Recently, [7] have shown that special non-homogenous field configurations with finite

energy with respect to a metastable vacuum do exhibit resonant decay. These states

circumvent the no-go theorem of [4] in allowing a non-vanishing r.h.s. for eq. (3.12), which

makes (3.13) strictly positive, thus allowing for oscillating in time field solutions.

It is also interesting to observe that instantons describing motion in forbidden regions

are non constant fields connected by analytic continuation to two real time solutions,

the field before and after tunneling, at point with vanishing Euclidean time derivative.

Instantons are therefore the Euclidean version of the oscillating field forbidden by the

no-go theorem. The no-go theorem must fail in Euclidean signature, and it does. The

Euclidean version of eq. (3.4) is

OE [ϕ] =

∫ t2E

t1E

dx0

∫

d~x

[

(∂0ϕ)2 +

d
∑

i=1

(∂iϕ)2

]

. (3.14)

This functional can be written in terms of the Euclidean stress tensor TE
µν by summing

over the diagonal components of

∂µϕ∂νϕ = TE
µν + δµνLE, (3.15)

where the Euclidean Lagrangian is

LE =
1

2
∂µϕ∂µϕ + V (ϕ). (3.16)

By using eq. (3.15) and the Euclidean conservation law ∂µTE
µν = 0, one can rewrite (3.14) as

OE [ϕ] = −2
D

D − 2

∫ t2E

t1E

dtE

∫

d~x V (ϕ(tE , ~x)). (3.17)

The above equation makes sense only when the integral in the r.h.s. is non-negative. This

is achieved when there is a large enough region of Euclidean space where the field acquires

values in classically allowed regions where V (ϕ) < 0, such as the regions ϕ1 < ϕ < ϕ2 and

ϕ > ϕ3 for the potential in figure 3.
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3.2 No quantum interference in the decay of a scalar field coupled to a gauge

field

We study now whether a theory of a scalar field coupled to a gauge field admits non-constant

classical field solutions of Lorentzian time signature that can be analiticaly continued to

Euclidean signature in two separate occasions.

We consider the Lagrangian

L = −
1

4
F a

µνF aµν +
1

2
Dµϕ(Dµϕ)† − V (ϕ). (3.18)

In the semiclassical approximation the Euclidean path integral is dominated by Eu-

clidean classical fields. These fields satisfy the global constraint

∂0

∫

d~x

[

1

2

d
∑

i=1

(F a
0i)

2 +
1

2
D0ϕ(D0ϕ)†

−
1

4

d
∑

i,j=1

(F a
ij)

2 −
d
∑

i=1

Diϕ(Diϕ)† − V (ϕ)

]

= 0,

which is an Euclidean version of energy conservation. We choose the original metastable

state energy equal to zero V (ϕ+) = 0 so that the previous equation gives

∫

d~x

[

1

2

d
∑

i=1

(F a
0i)

2 +
1

2
D0ϕ(D0ϕ)†

]

=

∫

d~x

[

1

4

d
∑

i,j=1

(F a
ij)

2 +

d
∑

i=1

Diϕ(Diϕ)† + V (ϕ)

]

=: U [ϕ,Aa
µ]. (3.19)

Given the Euclidean fields ϕ(tE , ~x), Aa
µ(tE , ~x), (3.19) is an equation for tE . For values of the

Euclidean fields in regions where V (ϕ) < 0, the r.h.s of eq. (3.19) might become negative

U [ϕ,Aa
µ] < 0. We assume that this is the case on an interval t1E < tE < t2E, and check

the possibility of a analytic continuation of the fields ϕ(tE , ~x) and Aa
µ(tE , ~x) to Lorentzian

signature tE → itE = t at t1E = t1 and back to Euclidean signature t → −it = tE at

t2E = t2. The Lorentzian classical solutions ϕ(t, ~x) and Aa
µ(t, ~x) are then defined on the

interval [t1, t2], they dominate the path integral and have both vanishing time derivative

at t = t1 and t = t2, as required by analytic continuation. In order to check if there is

a degeneracy of Lorentzian motions that can produce interference in the path integral we

will check if ϕ(t, ~x) and Aa
µ(t, ~x) have a non vanishing action in the interval [t1, t2].

To this aim we again use the energy-momentum tensor

Tµν = F ρa
µ F a

ρν + Dµϕ(Dνϕ)† − ηµνL, (3.20)

– 9 –
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and consider the following sum over the diagonal components of Tµν

OL[ϕ,Aa
µ] =

∫ t2

t1

dx0

∫

d~x

[

D0ϕ(D0ϕ)† +
1

d

d
∑

i=1

Diϕ(Diϕ)†
]

+

∫ t2

t1

dx0

∫

d~x





d − 1

d

d
∑

i=1

(F a
0i)

2 +
1

d

d
∑

i,j=1

(F a
ij)

2





=

∫ t2

t1

dx0

∫

d~x

[

T00 +
1

d

d
∑

i=1

Tii

]

. (3.21)

OL[ϕ,Aa
µ] ≥ 0 is a semi-definite positive functional, and a field solution (ϕ̃, Ãa

µ) with a

non-vanishing action gives OL[ϕ̃, Ãa
µ] > 0. We use the component equations of ∂µTµν = 0

integrated over space-time subregions, in order to show that indeed for every classical

solution OL[ϕ,Aa
µ] = 0. This implies that every solution defined on a finite time interval

[t1, t2] which can be analiticaly continued to Euclidean signature has to be a constant field

configuration equal to the false vacuum. The conclusion will be that field paths describing

the full tunneling event are purely Euclidean and therefore there is no resonant decay.

The overall T00 space integral is set to be equal to the total false vacuum energy

V (ϕ+) = 0 that is our initial condition in time, therefore the space integral of T00 vanishes

in the r.h.s of (3.21).

On the other hand, the component equation ∂µTµi = 0 gives

∂iTii = ∂0T0i −
∑

j 6=i

∂jTji

= ∂0(F
ρa
0 F a

ρi + D0ϕ(Diϕ)†)

−
∑

j 6=i

∂j(F
ρa
i F a

ρj + Diϕ(Djϕ)†). (3.22)

By integrating the previous equation over a space-time volume orthogonal to the xi

direction one gets

∂i

∫ t2

t1

dx0

∫

∏

j 6=i

dxjTii =

∫

∏

j 6=i

dxj

∫ t2

t1

dx0∂0



−
∑

j 6=i

F a
0jF

a
ji + D0ϕ(Diϕ)†





−

∫ t2

t1

dx0

∫

∏

j 6=i

dxj

∑

j 6=i

∂j(F
ρa
i F a

ρj + Diϕ(Djϕ)†)

= 0. (3.23)

The previous equation states that the above integral is constant along xi, therefore it

is equal to its value for xi → ∞, where it easier to see that it vanishes, since all the field

derivatives vanish at spacial infinity, and the potential goes to the false vacuum V (ϕ+) = 0.

We have shown that the r.h.s of eq. (3.21) vanishes, from the same equation one can

read that the two Lorentzian continuations ϕ(t, ~x), Aa
µ(t, ~x) have a vanishing action (3.18)

in the interval [t1, t2]. We conclude that there is no quantum interference in vacuum decay

– 10 –
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in a theory of a scalar field coupled to a gauge field. Therefore even in the presence of

a gauge field a metastable vacuum cannot decay in a resonant fashion. Generalization of

the above result to a gauge theory of an arbitrary number of interacting scalar fields is

straightforward, since all the steps of the proof we gave go through also in this case.

4. Conclusions

We studied whether in a theory of a scalar field coupled to a gauge field a homogeneous

metastable vacuum can decay in a resonant fashion. The answer turns out to be negative

and thus our result generalizes the no go theorem for resonant tunneling in a pure scalar field

theory [4]. The proof follows the line of [4], appropriately generalized to arbitrary space-

time dimensions and to the presence of a gauge field. Gauge interaction have exhibited

in the past novel non-perturbative phenomena such as the existence of solitons in D > 2,

forbidden for a pure scalar field theory by Derrick theorem [11]. Yet, in the present case

they did not come to rescue, and resonant tunneling from a homogeneous false vacuum and

its interesting implications for the dynamics of the landscape mentioned in the introduction

are also forbidden for theories of scalar fields coupled to gauge fields.

The authors of the no go theorem for resonant tunneling in a pure scalar field theory [4]

have recently proposed a way to circumvent their own no-go theorem [7]. They consider

the decay of inhomogenous exited states of a metastable vacuum, rather then the decay

of the false vacuum itself. These states represent quite ad hoc non-homogeneous initial

configurations of the scalar field, and whether they can emerge as the outcome of a previous

tunneling event in the landscape it remains to be explained. Besides the need to supply a

natural mechanism that makes the bubbles of [7] to contract, one should also estimate the

occurrence of such events in the landscape. This would be an essential ingredient in order

to determine whether the proposal of [7] represents an actual possibility for rapid vacuum

decay. As stressed in [7], the present no go theorem does not apply to non homogeneous

initial states. Notice that if indeed non homogeneous initial states can have resonant

tunneling, solitonic solutions present in gauge theories may naturally supply such initial

states as ground states in given topological sectors.
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Figure 4: A particle in region I with energy E = V+ − V
−

has a non vanishing probability to

tunnel to region III through the classically forbidden potential barrier of region II

A. Wave mechanics methods for tunneling amplitudes through multiple

barriers

In this appendix we review some well known but perhaps not so well recalled details of the

derivation of the effect of resonant tunneling in quantum mechanics. We also derive and em-

phasize some less known features of such a computation. The use of analytic continuation

on semiclassical wave functions makes possible to obtain the tunneling amplitudes without

the knowledge of the exact wave function near a classical turning point, (see for example [14]

for the application of this method for a single potential barrier, and [15] for a derivation of

the tunneling amplitudes by using exact wave functions). With the inclusion of sub-leading

contributions to the wave functions that can be neglected in the one potential barrier prob-

lem, this method is still efficient for multiple barriers potentials. Indeed, these terms encode

quantum interference effects arising in classically allowed regions between the barriers.

A.1 Tunneling through one potential barrier

Let us consider the tunneling problem represented in figure 4, where an incoming particle

of unit mass in region I with energy E is scattered by the potential barrier.

Due to the boundary conditions of the problem, in region III there is only a right

moving wave function (the transmitted wave)

ΨIII(x) = αR
III

e
i
~

R x
x1

dx|p(x)|

|p(x)|1/2
, (A.1)

where

p(x) =
√

2(E − V (x)) (A.2)

– 12 –



J
H
E
P
0
9
(
2
0
0
8
)
0
7
7

is the classical momentum of the particle.

The semiclassical wave function (A.1) is a valid approximation only on a region on the

right far enough from the turning point x = x1

|x − x1| ≫

(

~
2

2F1

)1/3

, (A.3)

where F1 is the classical force in x = x1, (see for example [15] for a discussion on this

condition).

The tunneling amplitude is given by the ratio between αR
III in (A.1) and the coefficient

αR
I of the right moving component of the semiclassical wave functions in region I. One way

to find the coefficients of the right moving and left moving semiclassical components of

the wave function is to go beyond the semiclassical region near a classical turning point,

and solve the Schroedinger equation for the linearized potential. One can then match the

coefficients of the asymptotic expansions far on the left and on the right of the turning

point of the obtained solutions. However, the matching conditions can also be obtained

without the knowledge of the exact solution and their asymptotic expansions, by analytic

continuation of the semiclassical wave functions on the complex plane along semicircular

paths centered in the classical turning points.

In region III near the singularity x = x1 of the semiclassical wave function (A.1) one

can expand the momentum as

p(x) =
√

2(E − V (x)) ∼
√

2F1(x − x1)
1/2. (A.4)

The function in (A.1) then for x ∼ x1 in region III reads

ΨIII(x) ∼ αR
III

e
i
~

2
√

2F1

3
|x−x1|3/2

|2F1(x − x1)|
1/4

. (A.5)

By going on the complex plane x − x1 → ρeiϕ one can circumvent the turning point

by a clockwise semicircular path 0 > ϕ > −π or by an anti-clockwise one 0 < ϕ < π, to

connect to region II.

The clockwise path at ϕ = −π gives

ΨIII(x) → eiπ/4αR
III

e
1

~

2
√

2F1

3
|x−x1|3/2

|2F1(x − x1)|
1/4

, (A.6)

while the anti-clockwise one at ϕ = π gives

ΨIII(x) → e−iπ/4αR
III

e−
1

~

2
√

2F1

3
|x−x1|3/2

|2F1(x − x1)|
1/4

. (A.7)

The continuations in the semiclassical region inside region II of these two contributions

reads

ΨIII(x) → eiπ/4eΘαR
III

e
− 1

~

R x
x+

dx|κ(x)|

|κ(x)|1/2
, (A.8)
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for the clockwise path, and

ΨIII(x) → e−iπ/4e−ΘαR
III

e
1

~

R x
x+

dx|κ(x)|

|κ(x)|1/2
, (A.9)

for the anti-clockwise path.

In the last two expressions

κ(x) =
√

2(V (x) − E), (A.10)

and

Θ =
1

~

∫ x1

x+

dx |κ(x)| . (A.11)

In region II, near the turning point x ∼ x+ one can again linearize the potential in

|x − x+|, and approximate (A.8), and (A.9) as

Ψ−
II(x) ∼ eiπ/4eΘαR

III

e−
1

~

2
√

2|F+|

3
|x−x+|3/2

|2F+(x − x+)|1/4
, (A.12)

Ψ+
II(x) ∼ e−iπ/4e−ΘαR

III

e
1

~

2
√

2|F+|

3
|x−x+|3/2

|2F+(x − x+)|1/4
, (A.13)

where F+ is the classical force in x = x+.

Since the growing solution Ψ+
II(x) above is suppressed by a factor e−2θ with respect to

the decreasing one Ψ−
II(x), its analytic continuation to region I will produce corrections to

the wave function ΨI(x) by far negligible in the semiclassical approximation.

Thus, in order to compute the tunneling amplitude one can consider only the two

analytic continuations of Ψ−
II(x) (A.12) to region I, x − x+ → ρeiϕ along both a clockwise

semicircular path ϕ = −π and an anti-clockwise one ϕ = π

Ψ−
II(x) → ieΘαR

III

e
i
~

2
√

2|F+|

3
|x−x+|3/2

|2F+(x − x+)|1/4
, (A.14)

Ψ−
II(x) → eΘαR

III

e−
i
~

2
√

2|F+|

3
|x−x+|3/2

|2F+(x − x+)|1/4
. (A.15)

The clockwise continuation gives the left-moving wave function (A.14) in region I, while

the anti-clockwise continuation gives the right-moving wave function (A.15) on the same

region. As explained in [14], one direction of continuation is reliable for the left moving part

of the wave function but unable to recover its right moving part, while the other direction

of continuation is reliable for the right moving part but fails to follow the left moving one.

To recover the full wave function one has then to sum over both paths of continuation

ΨI(x) =
ieΘ

2
αR

IIIΨ
L
I (x) +

eΘ

2
αR

IIIΨ
R
I (x). (A.16)
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From this last equation one reads the tunneling amplitude for the single potential barrier

in the semiclassical approximation

T =
αR

III

αR
I

= 2e−Θ. (A.17)

If one had decided also to keep the exponentially suppressed contributions in region II

from Ψ+
II(x) in (A.13), and perform both the clockwise and anti-clockwise analytic contin-

uation to go to region I, the wave function (A.16) would have been corrected by

ΨI(x) =
i

2
(eΘ − e−Θ)αR

IIIΨ
L
I (x)

+
1

2
(eΘ + e−Θ)αR

IIIΨ
R
I (x). (A.18)

Although the corrections in e−Θ appearing in eq. (A.18) are negligible for a single

potential barrier, they become relevant in the presence of two (or more) potential barri-

ers. Indeed, these corrections account for quantum interference in the region between the

barriers, and they are essential in order to recover meaningful tunneling amplitudes.

Equation (A.18) can be cast in the following nice formula, that connects the wave

function coefficients in two classical allowed regions separated by a potential barrier
(

αR
I

αL
I

)

=

(

cosh Θ i sinhΘ

−i sinh Θ cosh Θ

)(

αR
III

αL
III

)

= RΘ ·

(

αR
III

αL
III

)

, (A.19)

which shows that the wave function which enters from region III into the forbidden

region II, it reappears in region I as ”boosted” by the matrix RΘ

RΘ =

(

cosh Θ i sinhΘ

−i sinh Θ cosh Θ

)

. (A.20)

This gives for the transmission probability through the single barrier

|T |2 =

∣

∣

∣

∣

αR
III

αR
I

∣

∣

∣

∣

2

=
1

(cosh Θ)2
, (A.21)

which has to be trusted only at leading term

|T |2 =
1

(cosh Θ)2
∼ 4e−2Θ. (A.22)

A.2 Tunneling through a double barrier potential

For tunneling through the double barrier in figure 5 one can compute the full matrix

connecting the wave function in region V to the wave function in region I. This translates

in matrix language the prescription that we have illustrated in the previous section

~αin = RΘ1
RδRΘ2

~αout, (A.23)
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Figure 5: Double barrier potential: Due to quantum interference there is a finite spectrum of

energies such that the probability to tunnel through the double barrier is higher than the probability

to tunnel through a single barrier. This is due to the presence of the intermediate classically allowed

region III, where the various oscillating paths between the classical turning points x = x1, x = x2

can quantum interfere in a constructive way, giving rise to resonant tunneling.

where RΘ1
RδRΘ2

is given by

(

cosh Θ1 i sinh Θ1

−i sinhΘ1 cosh Θ1

)(

e−iδ 0

0 eiδ

)(

cosh Θ2 i sinh Θ2

−i sinh Θ2 cosh Θ2

)

= cos δ

(

cosh(Θ1 + Θ2) i sinh(Θ1 + Θ2)

−i sinh(Θ1 + Θ2) cosh(Θ1 + Θ2)

)

− i sin δ

(

cosh(Θ1 − Θ2) i sinh(Θ1 − Θ2)

−i sinh(Θ1 − Θ2) cosh(Θ1 − Θ2)

)

.

δ =
1

~

∫ x2

x1

dx
√

2(E − V (x))

is the interference phase responsible for resonant tunneling, while

Θ1 =
1

~

∫ x1

x+

dx
√

2(V (x) − E),

and

Θ2 =
1

~

∫ x3

x2

dx
√

2(V (x) − E)

are the corresponding (hyperbolic) angles in the classically forbidden regions II and IV in

figure 5.
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The transmission coefficient for double barrier tunneling is given by T = αR
out/α

R
in.

Computation gives the tunneling probability

|T |2 =
1

cos2 δ cosh2(Θ1 + Θ2) + sin2 δ cosh2(Θ1 − Θ2)
. (A.24)

The term in cos δ corresponds to the product of the decay probabilities, it is the non-

resonant contribution, dominant in the limit δ → 0, where interference in the intermediate

region plays no role. The term in sin δ in (A.24) is the effect of the quantum interference,

and it depends on the difference between Θ1 and Θ2. This term is produced by the

exponentially suppressed contributions in the intermediate region III that become relevant

after analytic continuation to region I, (see discussion related to equation (A.18)).

The tunneling probability can be closed to one in the resonant condition

δ = (n + 1/2) π, Θ1 ∼ Θ2. (A.25)

Notice that Θ1 ∼ Θ2 requires a large amount of fine tuning, since in the semiclassical

regime both Θ1 and Θ2 are large numbers in ~ units.

If one had neglected exponentially suppressed contributions for the semiclassical wave

functions obtained by analytic continuation toward the two classically forbidden regions,

the result for the tunneling probability would have been

|T |2 =
1

cos2 δ cosh2(Θ1 + Θ2)
. (A.26)

This is a meaningless result since it diverges at resonance cos δ = 0.

A.3 Tunneling through N barriers

Given N barriers separated by N −1 classically allowed regions, the matrix which connects

the wave functions on the two regions extending to infinity is given by RN =
∏N

k=1 RΘk
Rδk

RN =

N
∏

k=1

(

cosh Θk −i sinhΘk

i sinhΘk cosh Θk

)(

eiδK 0

0 e−iδK

)

, (A.27)

where

Θk =
1

~

∫

dx
√

2V (x), (A.28)

and

δk =
1

~

∫

dx
√

−2V (x). (A.29)

There may be various resonant tunneling conditions, the simplest one corresponds to

the existence of an energy bound state common to all the N − 1 classical allowed regions.

If the incoming particle has this bound state energy the total tunneling probability turns

out to be

|T |2 =
1

cosh2
(

−
∑N

k=1(−)kΘk

) , (A.30)
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and resonant tunneling occurs for

N
∑

k=1

(−)kΘk = 0. (A.31)

This resonance condition extends to a generic number of barriers N the resonance condition

Θ1 − Θ2 = 0, (A.32)

which has been obtained for the double barrier potential in figure 5.
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